Crystal Structure and Properties of N6/AMCC Copolymer from Theory and Fiber XRD
نویسندگان
چکیده
The MSXX force field developed previously from ab initio quantum calculations for studies of nylon are used to study the crystal structure and properties of the copolymer of nylon 6 with AMCC (4-aminomethylcyclohexanecarboxylic acid). For the isolated chain conformation of the copolymer, we consider both axial and equatorial connections of the chain with the cyclohexane ring and find that the best is chair-ee-St, which has equatorial connections on both ends of chair cyclohexane. We consider 12 possible crystal structures for the copolymer (the best four conformations of the isolated chain with the three forms of packing these chains: R form, γ form, and δ form). With 12.5% of AMCC in the copolymer, we find that the γ form with the chair-ee-St chain structure is the most stable, even though the R form is most stable for nylon 6. The calculated X-ray diffraction patterns of the predicted crystal structure fit both equatorial and meridional scans of XRD very well. There are two reasons that make R form less stable for the copolymer. One is the bad contact between the axial hydrogen atoms of the cyclohexane ring and the CH2 hydrogens. The other is the difficulty of intramolecular H-bonds in the copolymer. The predicted chain-axis repeat distance of the copolymer (0 K) is 1.4 Å smaller than for the R form of Nylon 6, in good agreement with the X-ray results, which indicates that it is 1.5 Å smaller (at 300 K). Young’s modulus in the chain direction is calculated to be 93 GPa for the copolymer (at 0 K), which compares to 135 and 295 GPa predicted for γ form and R form nylon 6, respectively. The introduced cyclohexane ring locates between the two amide pockets of the adjacent hydrogen bond sheets and has two major effects on the properties of the copolymer: (i) It causes twisted conformations, which decreases Young’s modulus of the copolymer in chain direction. (ii) It makes the chain rigid, which likely is responsible for the decrease in sensitivity of the copolymer to moisture.
منابع مشابه
Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications
Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...
متن کاملStudy of structure and thermal properties of styrene-butylacrylate copolymer with OMMT nanocomposite emulsions
(St-co-BA) polymer through montmorillonite (MMT) nanocomposite emulsion is prepared by in situ intercalative emulsion polymerization of styrene (St), butyl acrylate (BA) in the presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, 0.5, 1.0, 1.5, and 2.0 wt%). The synthetic compounds are characterized by FTIR, XRD. The nanocomposite emulsions are characterize...
متن کاملDesign of low-dispersion fractal photonic crystal fiber
In this paper, a fractal photonic crystal fiber (F-PCF) based on the 1st iteration of Koch fractal configuration for optical communication systems is presented. Complex structure of fractal shape is build up through replication of a base shape. Nowadays, fractal shapes are used widely in antenna topics and its usage in PCF has not been investigated yet. The purpose of this research is to compar...
متن کاملSupercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber
In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coeff...
متن کاملEffect of Sn Doping on Structural and Optical Properties of 2D α-MoO3 Nanostructures
Undoped and Tin (Sn) doped Molybdenum trioxide (α-MoO3) nanostructured thin films (which has lamellar (2D) structure) have been prepared using a simple and cost effective technique of spray pyrolysis on glass substrates at 450 ℃. Surface morphology, optical and structural properties of samples have been investigated using FESEM, UV-Vis spectroscopy and XRD analysis techniques, respectively. FES...
متن کامل